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Thrr~infbecbemistcyof~andits~~~has-beaapartially~by~ 
invesGgatiom~~*~ The importance of the auvature of the bent aromatic surfbce of C, has received 

attention,~ but the ~~~~~~c~~~~~~~~y~. Reductionof 

C, to &Hz is a protorypicol addition reaction;’ two mcent reports detail alternative routes to the 6,6&g 

junction vicinal dihydride. The first of these, hydmbmation/oxidation,5 was destined to give a vicinal adduct 
{although it could have been of the 5,Ming junction variety), but the second, Rl~-catalyzed reduetior~,~ could 

have given any of the possiile C&Hz’s_ The obserWien of only one major dihydride, which is ,the one 

calculated’Q to be the most stable of the 23 considered, was taken as a vzdkhtion of the aptid ttwmbai 

work. Another concern is the role of aroma&&y in stabilizing C&% The disseetien of the contributions ef 

~~~~C~ ~~~~y~~is~~~t. ~~s~,~u~~i 
caltition~~*~ on model compounds to shed light on these aspects of fnllerene chemistry. 

JXxon, et al.,% previously ceqared the interuuclesr H-H dices and related txxxI angles of t,2- 

dihydro- and dihaloe&enes with similar vahres for the 6,61ing junction vi&ally disubstituted C,‘s (the 1,9- 

addncts). They attributed the shorter internuclear distances in the fullerenes (2.23A vs. 2.31A for the 
dihydrides) to effects of the C, cage. As shown in Table 1, the fullerene internuclear H-H distance is not 

short, but rather a bit longer (due to molecular ~)~~~~, ~d~~~f~ 

for o&r curved modeis. The negative Heats of Hydrogenation (AZ&) (Table 1) for the simple model 
compounds reflect the destruction of 2 aromatic rings. For 9, the almost i~ao LU& indicates that the cx%&al 
2 rings of &by&e-9 possess diminished aromatic &amcter. For the remainder of the cases, inchrding the 

fullerene, the positive AHu’s are caused by the incmasmg strain of the increasingly curved surfaces of these 
compounds. A perhaps more effective way to address the issue of aromatic&y in fullerenes is to examine the 
energy differences between the * 1,2-” (vi&al) and ” 1,4-” dihydrides (Table l-the ” 1,4-” isomers are 2,4, 

6, 8, f0, 12, 14, 16, 18, aad 1,7-C,&&). For the first 3 cases, there is no diffarence in the number of 
aromatic rings for the 2 isomeric types. The best mcdel is the S, 6 pair, since the double bond substitution 

patterns do not change on going from one isomer to the other, the 7.0 kcaVmo1 energy diffa means that 
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the 1,4-isomer, 6, is mom stable. For flat models 7 and 9, and their comspooding isomers, the energy 
difference is negative, the 1,2-isomer is more stable, and there is one more aromatic ring in the 1,2-isomer. 
This yields values of 18.9 and 17.7 kcaUmo1, reqectively, for the “aromatic&y” of a benzene ring in these 

model systems. Models 11,13,15, and 17 are.moxe complex, shme there is not uniform curvature in these 
compounds. POAV analysis$ however, may he utilized in these cases to determine the approximate strain 

energy contribution to the &,,21,,, s. To calibrate the method, we calculated the strain in dehydre-11 by 
multiplying the sum of the squares of the pyramidaliqatkm angles by 200 kcal/mol; this gave a total strain 
energy of 51.8 kcallmol. The AMl-calculated energy d&c~~ce between dehydro-11, which is curved, and 

its isomer, dehydro-9, which is tlat, is 50.6 kcal/mol, which can be attributed to the strain energy of 11. 

With this confirmation of the methodology, we calculated that the strain energy contribution to the AEu2_1,41 

for 11 is 5.6 kcal/mol (more strain relieved for 11 than 12, which means that the “Aq-” should be -15.1 
k&/mot), for 13 is 3.1 kcal/mol (&- = -12.0 kcal/mol). for 15 is -8.6 kcal/mol (AJJ-, = -3.8 
kcal/mol), and for 17 is -8.6 kcal/mol (A;*) = -7.1 kcat/mol). This analysis gives a value of 22.1 

kcal/mol for the lost aromatic ring in the 11 to 12 isom&ation (using the S-6 energy difference without 

mod&&ion for the slightly increased H-H distance), and 19.0 Wmol for the 13 to 14 isomerization, both 
of which are close to the values for the flat model systems; 11 and 13 are ieas curved than Cm. The last two 
systems, as well as C, itself, show diminished aromaticity. For Cm, the value becomes 11.4 kcal/mol, which 

is around 60% of the value for fiat compounds. If one uses the energy of the 5,6ring junction vicinal C&r 
(Table 2), in which there are 2 fewer aromatic rings than in the global minimum dihydride, the resonance 

energy of each ring becomes 9.2 keal/mol. Either of these values are in accord with the assertion that the 
fullerene aromatic&y lies within 2 kcal/mol per carbon of a hypothetical ball of rolled-up graphite (10 

kcal/moI/ring would give a value for the resonance energy of 3.33 kcal/molK!, while graphite has a rcsonaace 
energy of 3-5 k&/mot/C). 
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previous work has enumerated the 23 possible dibydrides around the surface of the C, cage. 
Omitted, however, were the 2 dihydrides with ring-qencd structures (fulleroids). Our calculations 

indicate that the full&d structure based on addition to the 6,6-ring fusion is never a singlet e#rgy 

minimum The other one, however, is (see 20,22,25, and 27). For 25, whose curvature is close to C&, 
thefull& structure lies only 38.4 Wmol above the global minimum, and but 11.1 Wmol above 
the coirwponding fullerone (24). This implies that the ccmesponding &,HS ful&roid would be 
eneq&&lybelowseveralofthc23fullexenedihydrklesalrcadyconsi~. Therecentpqosa19that 

ring-opening of the C, cage gives rise to a “window” mechanism for the inwrporation of foreign atoms 
into the fuUerene center, provides added interest to the possibiIity of ring-opening in the dihydrides. For 
C,, the ring-opaxd structure was calculated to lie at least 120 kcaVmol above the ground state (and on 
the triplet’surface), while experimental evidence Suggests an 81 kcal/mol barrier. Our calculations 
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junction vicinaLone, 
= 1.51-1.6oA and r,, = 

suggest a much lowex barrier for the 5,6-vicinal dihydride. Perhaps photolysis or pyrolysis of this compound 

would lead to various endobedrally enqxwlatexl products, aikr which hydrogen ejection would yield the 
parent endoll& wkrene complexes. 
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