

Pergamon

0040-4039(94)01567-8

C₆₀ Dihydrides And Fullerene Aromaticity. Insights From Calculations On Model Compounds

Philip M. Warner

Chemistry Department, Northeastern University, Boston, MA 02115

Abstract: Semiciniprical MO calculations on model fullerene compounds reveal a connection with less and more curved aromatics, and allow, via comparisons of various dihydride energies, a quantitation of the aromatic character imbedded in the fullerene structure. Additionally, cage-opened dihydrides are found to be energetically reasonable species, and may provide an avenue for improved production of endohedrally encapsulated fullerenes.

The growth in the chemistry of C_{60}^{-1} and its derivatives² has been partially paralleled by theoretical investigations.^{2j,3} The importance of the curvature of the bent aromatic surface of C_{60} has received attention,^{3a} but the connection with other aromatic compounds has not been fully emphasized. Reduction of C_{60} to C_{60} H₂ is a prototypical addition reaction;⁴ two recent reports detail alternative routes to the 6,6-ring junction vicinal dihydride. The first of these, hydroboration/oxidation,⁵ was destined to give a vicinal adduct (although it could have been of the 5,6-ring junction variety), but the second, Rh-catalyzed reduction,⁶ could have given any of the possible C_{60} H₂'s. The observation of only one major dihydride, which is the one calculated^{34,6} to be the most stable of the 23 considered, was taken as a validation of the *a priori* theoretical work. Another concern is the role of aromaticity in stabilizing C_{60} .^{3a} The dissection of the contributions of strain and aromatic character to the overall energy of C_{60} is difficult. In this paper, we use AM1 calculations^{7,8} on model compounds to shed light on these aspects of fullerene chemistry.

Dixon, et al.,³⁶ previously compared the internuclear H-H distances and related bond angles of 1,2dihydro- and dihaloethenes with similar values for the 6,6-ring junction vicinally disubstituted C_{60} 's (the 1,9adducts). They attributed the shorter internuclear distances in the fullerenes (2.23Å vs. 2.31Å for the dihydrides) to effects of the C_{60} cage. As shown in Table 1, the fullerene internuclear H-H distance is not short, but rather a bit longer (due to molecular curvature) than model flat compounds, and the same as found for other curved models. The negative Heats of Hydrogenation ($\Delta H_{\rm H}$) (Table 1) for the simple model compounds reflect the destruction of 2 aromatic rings. For 9, the almost zero $\Delta H_{\rm H}$ indicates that the central 2 rings of **dehydro-9** possess diminished aromatic character. For the remainder of the cases, including the fullerene, the positive $\Delta H_{\rm H}$'s are caused by the increasing strain of the increasingly curved surfaces of these compounds. A perhaps more effective way to address the issue of aromaticity in fullerenes is to examine the energy differences between the "1,2-" (vicinal) and "1,4-" dihydrides (Table 1--the "1,4-" isomers are 2, 4, **6**, **8**, **10**, **12**, **14**, **16**, **18**, and 1,7-C₆₀H₂). For the first 3 cases, there is no difference in the number of aromatic rings for the 2 isomeric types. The best model is the **5**, **6** pair, since the double bond substitution patterns do not change on going from one isomer to the other; the 7.0 kcal/mol energy difference means that

the 1,4-isomer, 6, is more stable. For flat models 7 and 9, and their corresponding isomers, the energy difference is negative, the 1,2-isomer is more stable, and there is one more aromatic ring in the 1,2-isomer. This yields values of 18.9 and 17.7 kcal/mol, respectively, for the "aromaticity" of a benzene ring in these model systems. Models 11, 13, 15, and 17 are more complex, since there is not uniform curvature in these compounds. POAV analysis,³⁴ however, may be utilized in these cases to determine the approximate strain energy contribution to the $\Delta E_{(1,2,1,4)}$'s. To calibrate the method, we calculated the strain in **dehydro-11** by multiplying the sum of the squares of the pyramidalization angles by 200 kcal/mol; this gave a total strain energy of 51.8 kcal/mol. The AM1-calculated energy difference between dehydro-11, which is curved, and its isomer, dehydro-9, which is flat, is 50.6 kcal/mol, which can be attributed to the strain energy of 11. With this confirmation of the methodology, we calculated that the strain energy contribution to the $\Delta E_{(1,2,4,9)}$ for 11 is 5.6 kcal/mol (more strain relieved for 11 than 12, which means that the " $\Delta E_{(electronic)}$ " should be -15.1 kcal/mol), for 13 is 3.1 kcal/mol ($\Delta E_{\text{(electronic)}} = -12.0$ kcal/mol), for 15 is -8.6 kcal/mol ($\Delta E_{\text{(electronic)}} = -3.8$ kcal/mol), and for 17 is -8.6 kcal/mol ($\Delta E_{\text{(electronic)}} = -7.1$ kcal/mol). This analysis gives a value of 22.1 kcal/mol for the lost aromatic ring in the 11 to 12 isomerization (using the 5-6 energy difference without modification for the slightly increased H-H distance), and 19.0 kcal/mol for the 13 to 14 isomerization, both of which are close to the values for the flat model systems; 11 and 13 are less curved than C_{60} . The last two systems, as well as C60 itself, show diminished aromaticity. For C60, the value becomes 11.4 kcal/mol, which is around 60% of the value for flat compounds. If one uses the energy of the 5,6-ring junction vicinal $C_{60}H_2$ (Table 2), in which there are 2 fewer aromatic rings than in the global minimum dihydride, the resonance energy of each ring becomes 9.2 kcal/mol. Either of these values are in accord with the assertion that the fullerene aromaticity lies within 2 kcal/mol per carbon of a hypothetical ball of rolled-up graphite (10 kcal/mol/ring would give a value for the resonance energy of 3.33 kcal/mol/C, while graphite has a resonance energy of 3-5 kcal/mol/C).

Cpd.	ΔH _t kcal/mol	г _{н,н} , А	∢HCC, °	∢нссн,∘	E _{1,2} -E _{1,4} * kcal/mol	$\begin{array}{c} E_{1,2}\text{-}E_{1,4}^* & \Delta H_{R}^{1,2} \\ \text{kcal/mol} & \text{kcal/mol} \end{array}$		
1	57.87	2.24	106.3	28.6	5.3 -30.9		O, flat	
3	82.43	2.18	107.4	4.9	7.8 -19.6		0, flat	
5	90.30	2.18	106.4	1.5	7.0	7.0 -12.1		
7	99.24	2.13	104.3	5.0	-11.9	-11.9 -22.8		
9	139.49	2.12	103.9	0.1	-10.7	0.4	1, flat	
11	165.23	2.24	109.0	0.7	-20.7	25.2	1, curved	
13	239.52	2.23	107.8	0.0	-15.1	32.3	1, curved	
15	343.57	2.23	107.2	0.2	4.8	36.9	1, curved	
17	444.73	2.23	106.5	0.0	1.5	41.8	1, curved	
1,9-C ₆₉ H ₂ ^d	776.1	2.23	107.4	0.0	-4.4 22.2		1, curved	
[•] ΔE between the 1,2-H ₂ and 1,4-H ₂ isomers-a negative value means the 1,2-H ₂ isomer is more stable; ^b Heat of Hydrogenation for the 1,2-H ₂ isomer calculated from ΔH_{i} (aromatic precursor) - 13.4 - ΔH_{i} (1,2-H ₂); [*] change in number of formal benzene rings on going from 1.2-H ₂ to 1.4-H ₂ and architecture of aromatic precursor: 4deta from reference 3h								

Table 1.	AM1-Calculated	Parameters an	d Energies f	for Model Fullerene	
1.2-Dihy	dro Compounds.	Comparisons	with Model	1,4-Dihydro Isomers.	

Previous work has enumerated the 23 possible dihydrides around the surface of the C_{60} cage. Omitted, however, were the 2 dihydrides with ring-opened structures (fulleroids). Our calculations indicate that the fulleroid structure based on addition to the 6,6-ring fusion is never a singlet energy minimum. The other one, however, is (see 20, 22, 25, and 27). For 25, whose curvature is close to C_{60} , the fulleroid structure lies only 38.4 kcal/mol above the global minimum, and but 11.1 kcal/mol above the corresponding fullerene (24). This implies that the corresponding $C_{60}H_2$ fulleroid would be energetically below several of the 23 fullerene dihydrides already considered. The recent proposal⁹ that ring-opening of the C_{60} cage gives rise to a "window" mechanism for the incorporation of foreign atoms into the fullerene center, provides added interest to the possibility of ring-opening in the dihydrides. For C_{60} , the ring-opened structure was calculated to lie at least 120 kcal/mol above the ground state (and on the triplet surface), while experimental evidence suggests an 81 kcal/mol barrier. Our calculations

Cpd.	E _{ral} ^b	Cpd,	E _{rel} b		Cpd.	E _{sel} b		Cpd.	E
11 [¢]	(0)	13°	(0)]	15°	(0)		1 7 °	(0)
19°	30.3	21°	31.8]	24*	27.3		26°	30.9
20 ⁴	62.3	22 ^d	59.8]	25	38.4		274	45.3
		23	56.5]					
⁴ 1,7-C ₆₀ H ₂ , the 5,6-ring junction vicinal dihydride, lies 18.4 kcal/mol (PM3) ^{34,8} above the 6,6-ring junction vicinal one, which is the global minimum; ^b in kcal/mol; ^c these compounds have $r_{Ce}(sp^3-sp^3) = 1.51-1.60$ Å and $r_{HH} = 2.23-2.30$ Å; ^d these have $r_{Ce}(sp^3-sp^3) = 2.34-2.41$ Å and $r_{HH} = 1.80-1.85$ Å,									

Table 2. AM1-Calculated Energies of Some Model Fullerene Dihydrides.*

suggest a much lower barrier for the 5,6-vicinal dihydride. Perhaps photolysis or pyrolysis of this compound would lead to various endohedrally encapsulated products, after which hydrogen ejection would yield the parent endohedral fullerene complexes.

REFERENCES:

- Some recent reviews: (a) Acc. Chem. Res. 1992, 23 (3) (a special issue on buckminsterfullerenes); (b) Wudl, F.; Hirsch, A.; Khesmani, K. C.; Suzuki, T.; Allemand, P. M.; Koch, A.; Eckert, H.; Srdanov, G.; Webb, H. M. ACS Symp. Ser. 1992, 481, 161-175; (c) Hirsch, A. Ang. Chem. Int. Ed. Engl. 1993, 32, 1138; (d) Taylor, R.; Walton, D. R. M. Nature 1993, 363, 685; (e) Taylor, R. J. Chem. Soc. Perkin Trans. 2 1993, 813; (f) Baum, R. M. Chem. Eng. News 1993, Nov. 22, 8.
- (a) Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraki, T.; Sugiura, Y. J. Am. Chem. Soc. 1993, 115, 7918; (b) Sijbesma, R.; Srdanov, G.; Wudl, F.; Castoro, J. A.; Wilkins, C.; Friedman, S. H.; DeCamp, D. L.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6510; (c) Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6510; (c) Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6510; (c) Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6506; (d) Prato, M.; Bianco, A.; Maggini, M.; Scorrano, G.; Toniolo, C.; Wudl, F. J. Org. Chem. 1993, 58, 5578; (e) Prato, M.; Lucchini, V.; Maggini, M.; Stimpfl, E.; Scorrano, G.; Eiermann, M.; Suzuki, T. Wudl, F. J. Am. Chem. Soc. 1993, 115, 8479, and references therein; (f) Smith, A. B., III; Strongin, R. M.; Brard, L.; Furst, G. T.; Romanow, W. J. J. Am. Chem. Soc. 1993, 115, 5829; (g) Isaaca, L.; Wehrsig, A.; Diederich, F. Helv. Chim. Acta 1993, 76, 1231; (h)Prato, M.; Li, Q. C.; Wudl, F. J. Am. Chem. Soc. 1993, 115, 1148; (i) Creegan, K. M.; Robbins, J. L.; Robbins, W. K.; Millar, J. M.; Sherwood, R. D.; Tindall, P. J.; Cox, D. M.; Smith, A. B., III; McCauley, J. P., Jr.; Jones, D. R.; Gallagher, R. T. J. Am. Chem. Soc. 1992, 114, 1103; (j) Akasaka, T.; Ando, W.; Kobayashi, K.; Nagase, S. J. Am. Chem. Soc. 1994, 116, 1359.
- (a) Haddon, R. C. Science 1993, 261, 1545; (b) Haddon, R. C. J. Am. Chem. Soc. 1990, 112, 3385; (c) Haddon, R. C. Acc. Chem. Res. 1988, 21, 243; (d) Matsuzawa, N.; Fukunaga, T. Dixon, D. A. J. Phys. Chem. 1992, 96, 10747; (e) Matsuzawa, N.; Dixon, D. A.; Krusic, P. J. J. Phys. Chem. 1992, 96, 8317; (f) Matsuzawa, N.; Dixon, D. A.; Fukunaga, T. J. Phys. Chem. 1992, 96, 7594; (g) Henderson, C. C.; Cahill, P. A. Chem. Phys. Lett. 1992, 198, 570; (h) Dixon, D. A.; Matsuzawa, N.; Fukunaga, T.; Tebbe, F. N. J. Phys. Chem. 1992, 96, 6107; (i) Bunlap, B. I.; Brenner, D. W.; Mintmire, J. W.; Mowrey, R. C.; White, C. T. J. Phys. Chem. 1991, 95, 5763; (j) Raghavachari, K. Chem. Phys. Lett. 1992, 195, 221; (k) Gao, Y.-D.; Herndon, W. C. J. Am. Chem. Soc. 1993, 115, 8459; (l) Murry, R. L.; Strout, D. L.; Odom, G. K.; Scuseria, G. E. Nature 1993, 366, 665; (m) Murry, R. L.; Colt, J. R.; Scuseria, G. E. J. Phys. Chem. 1993, 97, 4954.
- For some others, see (a) Caron, C.; Subramanian, R.; D'Souza, F.; Kim, J.; Kutner, W.; Jones, M. T.; Kadish, K. M. J. Am. Chem. Soc. 1993, 115, 8505; (b) Kampe, K.-D.; Egger, N.; Vogel, M. Ang. Chem. Int. Ed. Engl. 1993, 32, 1174, and references therein.
- 5. Headerson, C. C.; Cahill, P. A. Science 1993, 259, 1885.
- 6. Becker, L.; Evans, T. P.; Bada, J. L. J. Org. Chem. 1993, 58, 7630.
- 7. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.
- 8. We used the Hyperchem version of AM1. All geometries were optimized at the SCF level to gradients of ≤0.05 kcal/mol/Å. We thank Autodesk, Inc. for a gift of Hyperchem through its Educational Grants Program.
- 9. Murry, R. L.; Scuseria, G. E. Science 1994, 263, 791.

(Received in USA 1 July 1994; revised 21 July 1994; accepted 25 July 1994)